metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu-Xia Zhang

Department of Chemistry, Xinyang Normal University, Henan 464000, People's Republic of China

Correspondence e-mail: yuxiazhang@eyou.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.023 wR factor = 0.053 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A one-dimensional coordination polymer: catena-poly[[triaquapyridinecobalt(II)]µ-sulfato]

In the structure of $[Co(C_5H_5N)(H_2O)_3SO_4]_n$, a one-dimensional coordination polymer, each Co^{II} atom is octahedrally coordinated by two O atoms of two different sulfate ions, a pyridine molecule and three water molecules. The polymeric chains are connected by weak intermolecular $O-H\cdots O$ hydrogen-bonding interactions to give a two-dimensional structure.

Comment

The most important driving forces in crystal engineering include coordination bonding and hydrogen-bonding interactions. Networks assembled from mono- or polynuclear metal complexes *via* hydrogen-bonding interactions have been reported recently (Aakeröy *et al.*, 1998). The unique strength, directionality, and complementarity of non-covalent hydrogen bonds play a central role in the creation of a variety of architectures for molecular self-assembly and recognition in chemical, physical and biological sciences (Lehn, 1995; Whitesides *et al.*, 1991; Rebek, 1990). Here, the structure of a one-dimensional coordination polymer, $[Co(C_5H_5N)(H_2O)_3$ -SO₄]_n, (I), which features a two-dimensional hydrogenbonded network resulting from inter-polymer $O-H\cdots O$ hydrogen-bonding interactions, is reported.

The X-ray structure determination reveals that (I) is a onedimensional coordination polymer (Fig. 1). The coordination geometry around the Co^{II} atom is octahedral; one of the

A part of the polymeric chain, showing 30% probability displacement ellipsoids and the atom-numbering scheme for the contents of the asymmetric unit.

Received 21 November 2003 Accepted 1 December 2003 Online 12 December 2003

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved sulfate O atoms (O1) and the three water O atoms (O5, O6 and O7) occupy the basal plane, with Co-O distances in the normal range of 2.0762 (16)-2.1358 (14) Å. An O atom of another sulfate ion, O3ⁱⁱ [symmetry code: (ii) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2}-z$], and the N atom of the pyridine ligand, N1, occupy the two apices of the octahedron, with Co-O and Co-N distances of 2.1114 (14) and 2.1056 (18), respectively.

In the crystal structure, the polymeric chains are arranged parallel to the b axis. In each polymeric chain, O6-H6A···O4, O5-H5B···O2ⁱ, O5-H5C···O4ⁱⁱ and O7- $H7A \cdots O4^{1}$ hydrogen bonds involving the water molecules and sulfate O atoms are observed [symmetry code: (i) x, y - 1, z]. Adjacent polymeric chains are inter-linked through O6- $H6B \cdots O1^{iii}$ and $O7 - H7B \cdots O3^{iii}$ hydrogen bonds to form a two-dimensional network [symmetry code: (iii) $x, \frac{1}{2} - y, z + \frac{1}{2}$]. The geometry of these $O-H \cdots O$ hydrogen bonds and the symmetry codes are given in Table 2.

Experimental

The title compound was synthesized by the reaction of $Co(SO_4)_2 \cdot 3H_2O$ and pyridine (molar ratio 1:2) in water. The concentrated solution was left undisturbed for slow evaporation of the solvent to give red crystals. Analysis found: C 20.54, H 3.63, N 4.99%; calculated for C₅H₁₁CoNO₇S: C 20.84, H 3.85, N 4.86%.

Crystal data

 $[Co(SO_4)(C_5H_5N)(H_2O)_3]$ $M_r = 288.14$ Monoclinic, $P2_1/c$ a = 11.951 (4) Åb = 7.639 (2) Å c = 11.507 (4) Å $\beta = 110.711 \ (4)^{\circ}$ $V = 982.7 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector	1988 independent ref
diffractometer	1710 reflections with
ω scans	$R_{\rm int} = 0.024$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.599, \ T_{\max} = 0.674$	$k = -9 \rightarrow 8$
5362 measured reflections	$l = -9 \rightarrow 14$

Refinement

Refinement on F^2	и
$R[F^2 > 2\sigma(F^2)] = 0.023$	
$wR(F^2) = 0.053$	
S = 1.04	(
1988 reflections	2
161 parameters	2
H atoms treated by a mixture of	E
independent and constrained	E
refinement	

 $D_x = 1.948 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 642 reflections $\theta = 3.2 - 19.9^{\circ}$ $\mu = 1.98~\mathrm{mm}^{-1}$ T = 293 (2) K Block red $0.30 \times 0.20 \times 0.20$ mm

flections $I > 2\sigma(I)$

 $v = 1/[\sigma^2(F_o^2) + (0.0208P)^2]$ + 0.4534P] where $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0271 (15)

Table 1

Selected geometric parameters (Å, °).

Co1-O6	2.0762 (16)	Co1-O3 ⁱⁱ	2.1114 (14)
Co1-O7	2.1050 (15)	Co1-O5	2.1144 (16)
Co1-N1	2.1056 (18)	Co1-O1	2.1358 (14)
O6-Co1-O7	88.73 (6)	N1-Co1-O5	90.25 (7)
O6-Co1-N1	91.15 (7)	O3 ⁱ -Co1-O5	91.01 (6)
O7-Co1-N1	91.26 (6)	O6-Co1-O1	92.37 (6)
O6-Co1-O3 ⁱⁱ	87.63 (6)	O7-Co1-O1	176.61 (6)
O7-Co1-O3 ⁱⁱ	87.19 (5)	N1-Co1-O1	91.92 (6)
N1-Co1-O3 ⁱⁱ	178.05 (6)	O3 ⁱ -Co1-O1	89.65 (5)
O6-Co1-O5	177.86 (6)	O5-Co1-O1	85.96 (6)
O7-Co1-O5	92.86 (6)		

Symmetry code: (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Table 2		
Hydrogen-bonding geometry	(Å,	°)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5B\cdots O2^{i}$	0.82(1)	1.95 (2)	2.777 (2)	176 (3)
$O5-H5C\cdots O4^{ii}$	0.82(1)	2.12 (2)	2.848 (3)	148 (3)
$O6-H6A\cdots O4$	0.81(1)	1.97 (2)	2.709 (2)	151 (3)
$O6-H6B\cdotsO1^{iii}$	0.82(1)	2.01 (2)	2.828 (2)	172 (2)
$O7-H7A\cdots O4^{i}$	0.81(1)	2.07 (2)	2.875 (2)	171 (2)
$O7-H7B\cdots O3^{iii}$	0.81(1)	1.97 (1)	2.781 (2)	174 (2)

Symmetry codes: (i) x, y - 1, z; (ii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $x, \frac{1}{2} - y, \frac{1}{2} + z$.

C-bound H atoms were placed at calculated positions and allowed to ride on the atom to which they are bonded [C-H = 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$]. H atoms of the water molecules were located in a difference map and their positional and U_{iso} parameters were refined. O-H distances were restrained to 0.82 (1) Å.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

YXZ gratefully acknowledges the financial support of the Science Foundation of Henan State Education Commission in China (No. 2001150006).

References

- Aakeröy, C. B., Beatty, A. M. & Leinen, D. S. (1998). J. Am. Chem. Soc. 120, 7383-7384.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lehn, J. M. (1995). Supramolecular Chemistry. Weinheim: VCH.
- Rebek, J. (1990). Angew. Chem. Int. Ed. Engl. 29, 102-103.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312-1313.